

Process Integration Project

Brent P. Nelson Steven Robbins

Denver, Colorado April 17-19, 2007

- Project Success Elements
 - Process Integration
 - Concept
 - Objectives
 - Terminology
 - Activities
 - Future Plans
 - Extra Slides for Questions

Project Success Elements

The NCPV's Strength...

Measurements & Characterization Group

Manager Pete Sheldon

AA Audrey Carapella

Div. # 5210

5211

Analytical Microscopy

Mowafak Al-Jassim

5212

Cell & Module Performance

Keith Emery

5213

Surface Analysis

Sally Asher

5214

Electro-Optical Characterization

TBD

5215

Process Integration Development

Brent Nelson

Electronic Materials & Devices Group

Manager John Benner

AA Carole Allman

Div. # 5220

5221

High Efficiency Devices & Concentrators

Sarah Kurtz

5222

Silicon Materials & Devices

Howard Branz

5223

Polycrystalline Compound

Rommel Noufi

5224

Process Development & Engineering

David Ginley

Technology Applications & Reliability Group

Manager Carol Riordan

AA Paula Robinson

Div. # 5230

5231

Engineering & Reliability R&D

Carol Riordan

5232

Technology Development

Martha Symko-Davies

5233

Technology Acceptance

Cecile Warner

5234

PV Engineering, Test & Evaluation

Bill Marion

Direct Reports

Manager Larry Kazmerski

AA

Div. # 5240

5241

PV Program Manager

Larry Kazmerski

5242

Emeritus

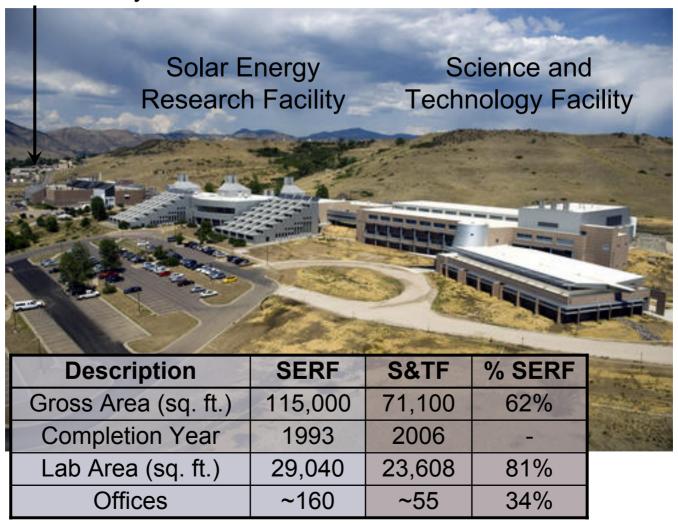
Larry Kazmerski

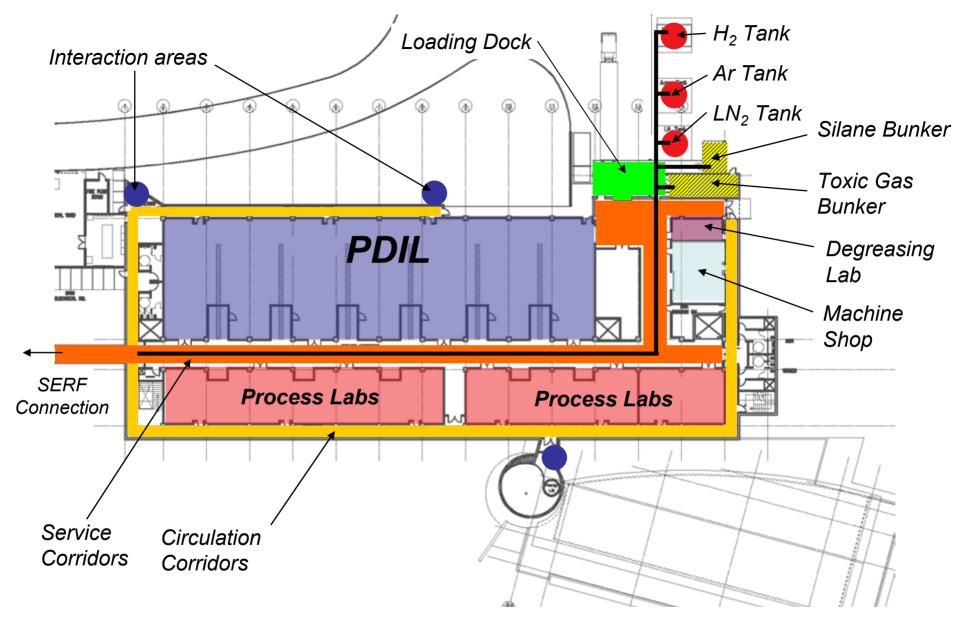
5243

Research Fellow

Larry Kazmerski

5244


Post Doc


Larry Kazmerski

The NCPV's Facilities...

Outdoor Test Facility

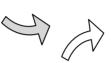
The S&TF Second Floor

- Project Success Elements
- Process Integration
 - Concept
 - Objectives
 - Terminology
 - Activities
- Future Plans
- Extra Slides for Questions

Typical Material Science Cycle...

- Attending Conferences
- · Reading Publications
- Sabbaticals to NREL
- Seminars

Patents


Presentations

Sabbaticals Away

Publications

Technical Interactions

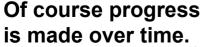
Outside Knowledge

- **Internal Reports**
- Individual Training
- Individual Experience
- Individual Intuition

Shared Knowledge

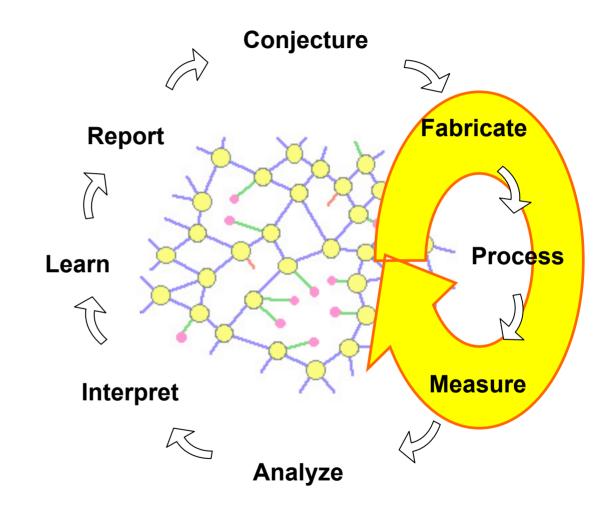
Learn

Interpret



Measure

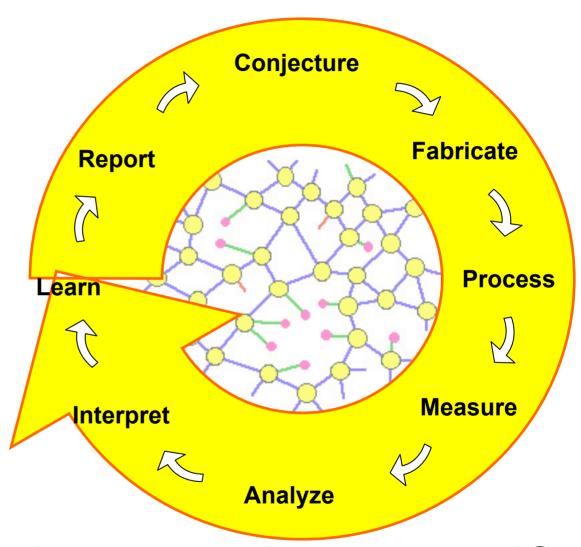
Analyze



What if...

So that

- there are no air breaks between steps
- any amount of steps can be sequenced in any order

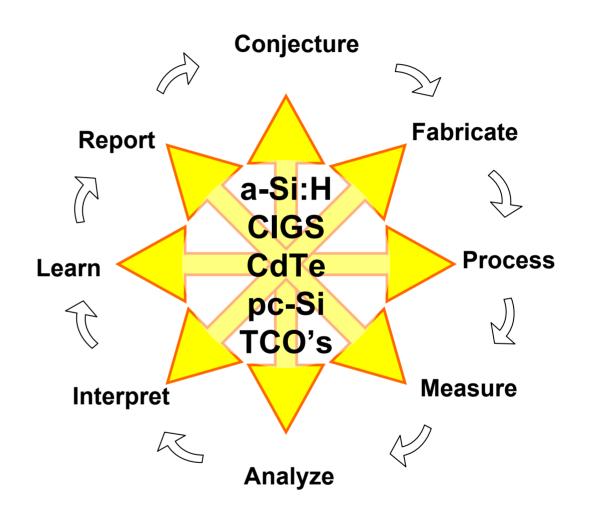


... all the tools were integrated?

What if...

So that

- · analysis was facilitated
- control of deposition, processing, and measurement was automated
- the entire history of a sample is available to anyone



... all the data was integrated?

What if...

So that

- device designs are not limited by existing technologies
- experts from various materials and characterization specialties work together to answer specific questions
- combinatorial techniques were incorporated as appropriate

... all materials were integrated?

Process Integration Vision

- Integrate deposition, characterization, and processing tools
 - Flexible and robust
 - Standardized transfer interface
 - Standardized sample size (~ 6" x 6")
 - Controlled sample ambient between tools
 - Integrated and secure data handling

Benefits

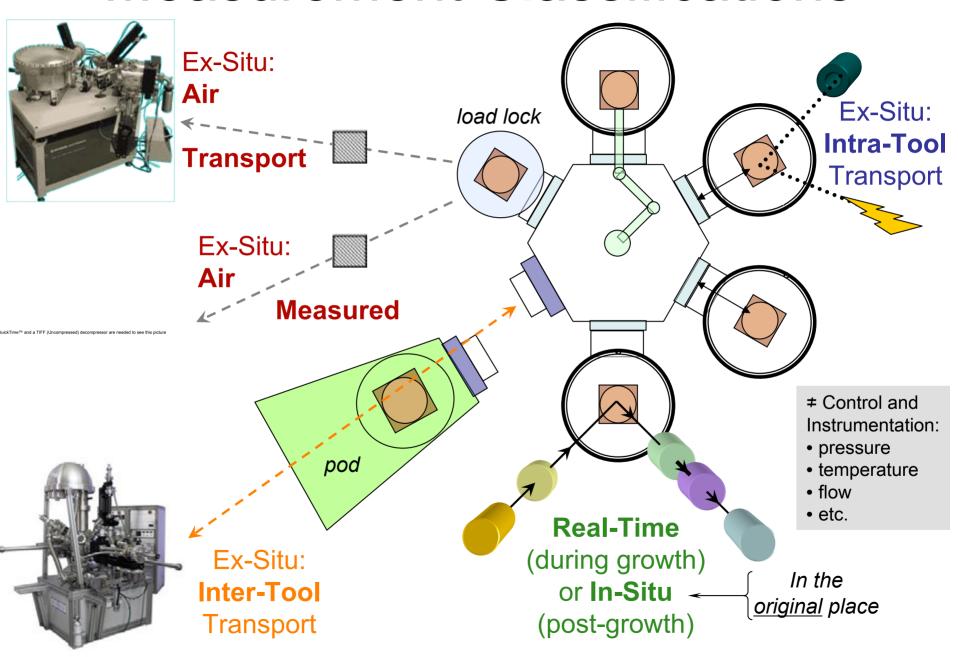
- Answers to previously inaccessible research questions
- Control and characterization of critical surfaces (interfaces) and their impact on subsequent layers
- Assess process-related source chemistry, surface chemistry and kinetics, and bulk reconstruction
- Grow layers and alter interfaces using controlled processes and transfer ambients (without exposure to air)
- Develop new techniques, methodologies, device structures, materials, and tools (growth, processing, and analytical)
- Integrate virtually any of combination of capabilities built to the standards
- Improved collaborations with university and industry researchers

• Process Integration Animation

• Download at:

ftp://ftp.nrel.gov/pub/bnelson-out/Process_Integration_Files/Movies

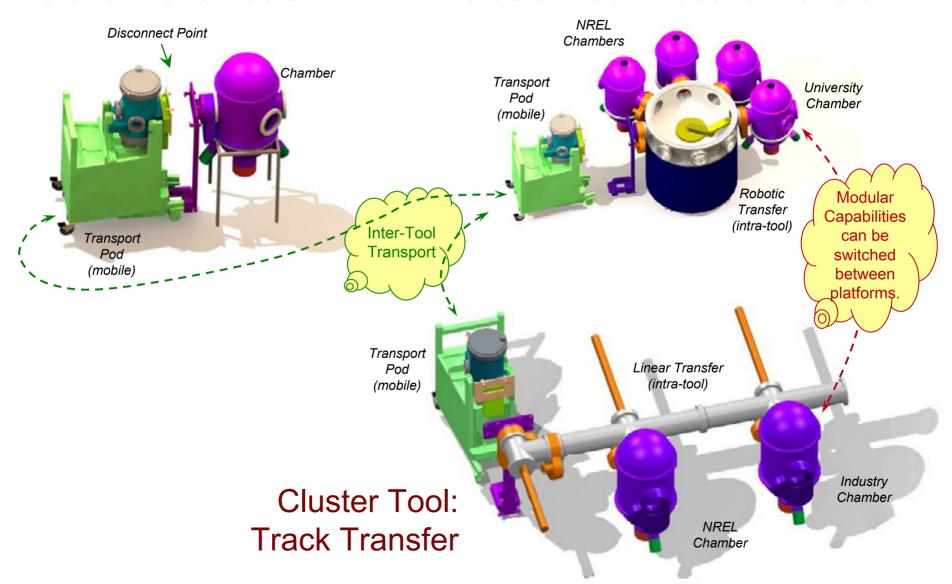
Maximum Substrate Size Drives Everything Else


157 x 157 mm Maximum

- 6.18" x 6.18"
- supports the multi-crystalline silicon industry (56% of PV)
- supports other technologies (44%)
 - single crystal silicon (round)
 - thin-films (a-Si, CdTe, CIGS) by using a commercially relevant size
 - third generation PV

Substrate Materials

- (poly) crystalline wafers
- soda lime glass
- aluminosilicate glass
- stainless steel
- exotic & specialized


Measurement Classifications

Inter-Tool Transport via Pod

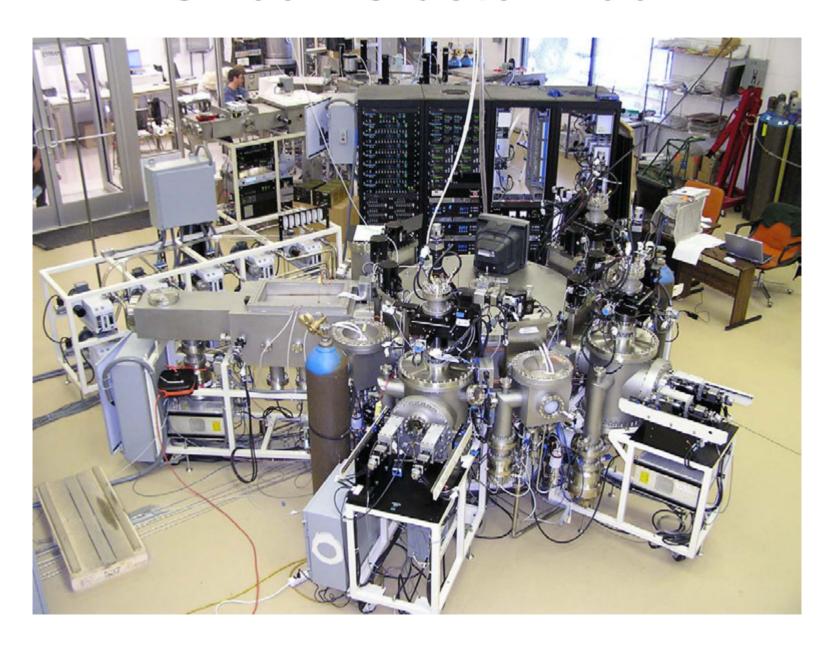
Stand-Alone Tools

Cluster Tool: Robotic Transfer

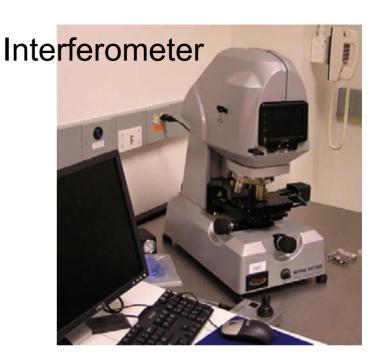
Process Integration Equipment

- Integrated Equipment Delivered
 - TCO Sputtering Tool
 - Mobile Pod
 - Silicon Cluster Tool
- Support Equipment
 - Profilometer
 - Interferometer
 - Ellipsometer
- Integrated Equipment being Developed

TCO Sputtering Tool



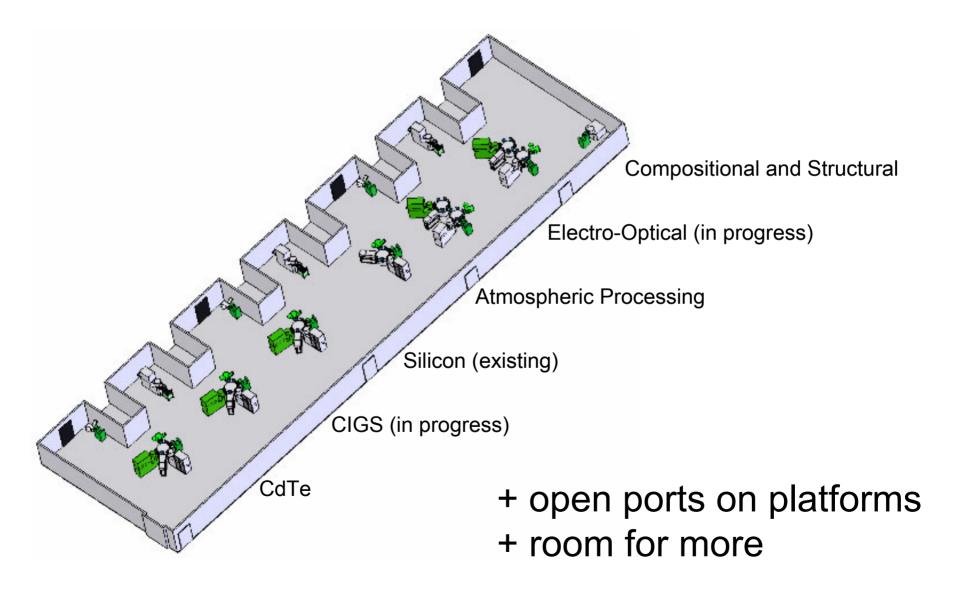
Mobile Pod


Silicon Cluster Tool

Support Equipment

Profilometer

- Project Success Elements
- Process Integration
 - Concept
 - Objectives
 - Terminology
 - Activities



- Future Plans
- Extra Slides for Questions

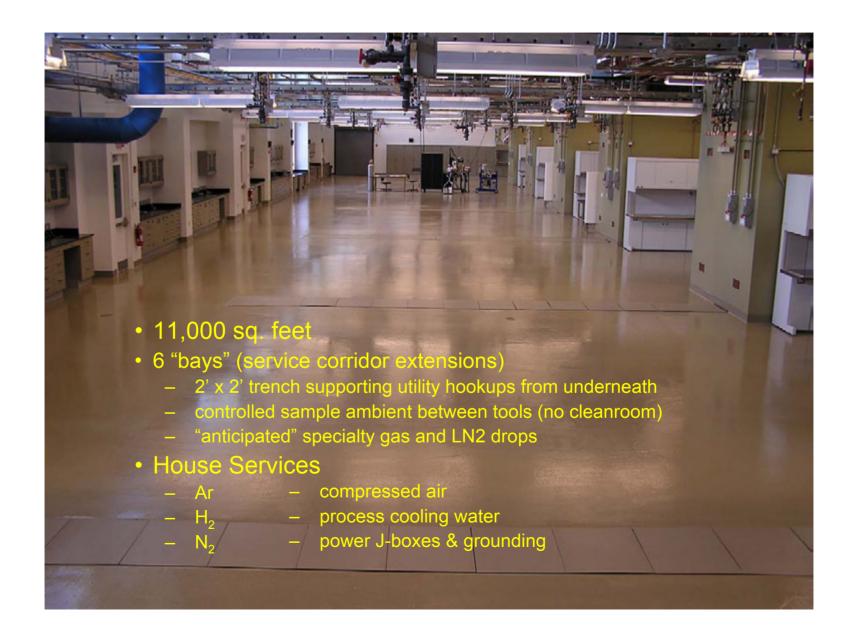
S&TF Essential Capital Equipment

Item	Status	Budget (\$k)
Transport Pod & Tooling	Operational	\$105
TCO Sputtering Tool	Operational	\$336
Silicon Platform	Installing	\$1,250
Support Equipment	Mixed	\$409
CIGS Platform	Awarded	\$1,200
Modular Auger Tool	Awarded	\$550
CdS by CBD	Building	\$55
XPS and UPS Tool	Developing	\$1,250
Electro-Optical Platform	Developing	\$1,450

Future Plans

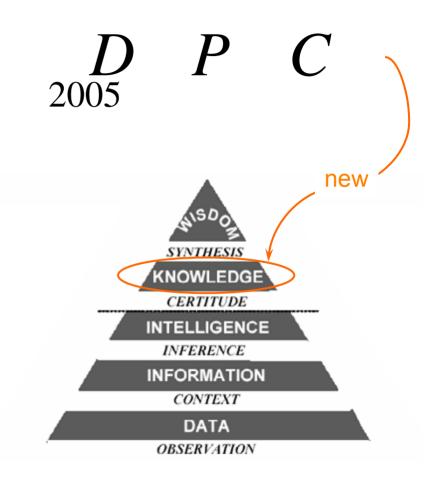
Bottom Line

- Project Success Elements
- Process Integration
- Future Plans



- Extra Slides for Questions
 - PDIL (+ separate file)
 - Process Integration Concept Expansion
 - Process Integration Choice Summaries
 - Is SEMATECH a model for PV (in separate file)
 - Business Case Analysis (in separate file)

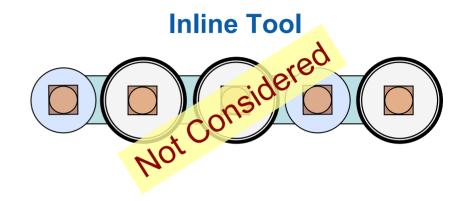
PDIL Concept


- A facility that provides
 - flexible access to various utilities
 - large space to bring in big equipment (clusters)
 - minimal physical barriers to tool arrangement
 - space not owned by one internal "silo"
- A facility that makes possible
 - easy inter-tool integration via the mobile pod
 - easy distribution of subject matter experts to multiple tools
 - the process integration concept

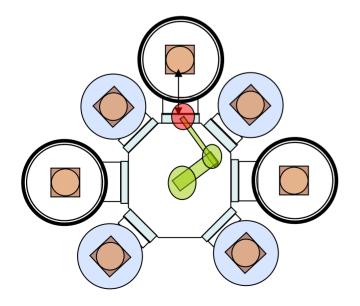
Process Development Integration Lab

Process Integration: So What

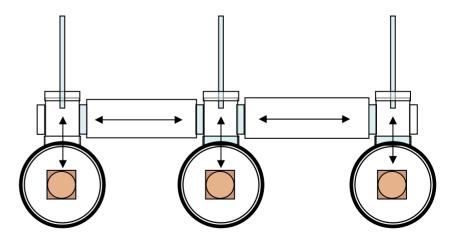
- Build Equipment
 - Deposition (D)
 - Processing (P)
 - Characterization (C)
- With the right operators
- Build the knowledge base



Haeckel's Hierarchy, Barabba and Zaltman, Harv. Bus. Sch. Press, 1991


Chamber Integration Options

Stand-Alone Tool



Cluster Tool: Robotic Transfer

Cluster Tool: Tracked Transfer

Path to Integrated Tools

- Establish design standards for all tools consisting of:
 - maximum substrate size and shape
 - platen to hold substrates of various size and shapes
 - transfer mechanism for platens within tools (intra-tool)
 - transport of platens between tools via a mobile pod (inter-tool)
 - pod to tool interface (dock)
- Design and procure the first tool(s) using these standards
- Prioritize techniques necessary for future research
- Choose integration type (platforms) for each technique
- Design and procure actual tools
 - prioritize real-time and in-situ characterization
 - maximize modularity of individual tools (chambers, techniques)
- Optimize tool function
- Facilitate collaborations with Universities and Industry

Threats & Constraints

We Must Receive Capital Equipment Requests:

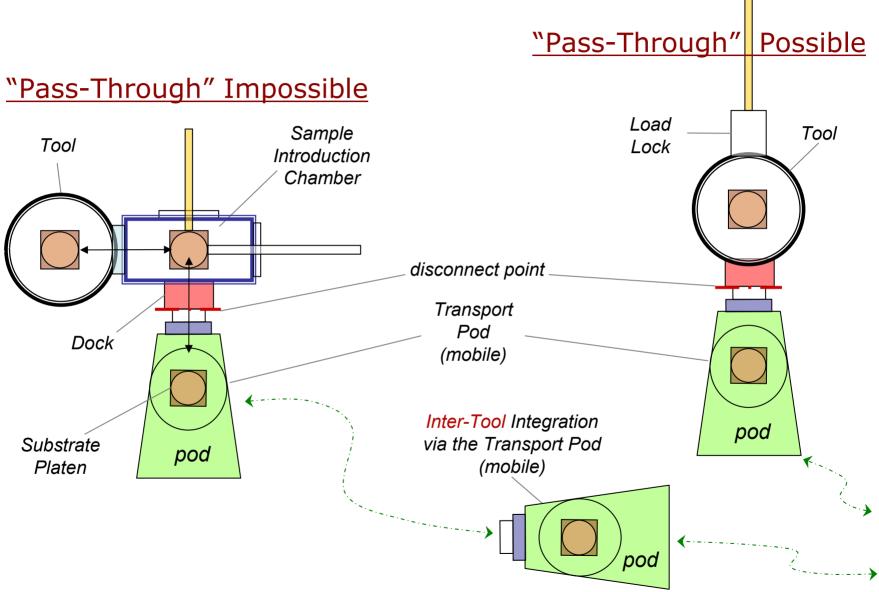
- Typical Semiconductor manufacturing tool ≈ \$4M
- Typical Semiconductor tool installation cost ≈ 20%
- Easily fit 12 Semiconductor tools into PDIL

Core Groups Must Allocate Human Resources:

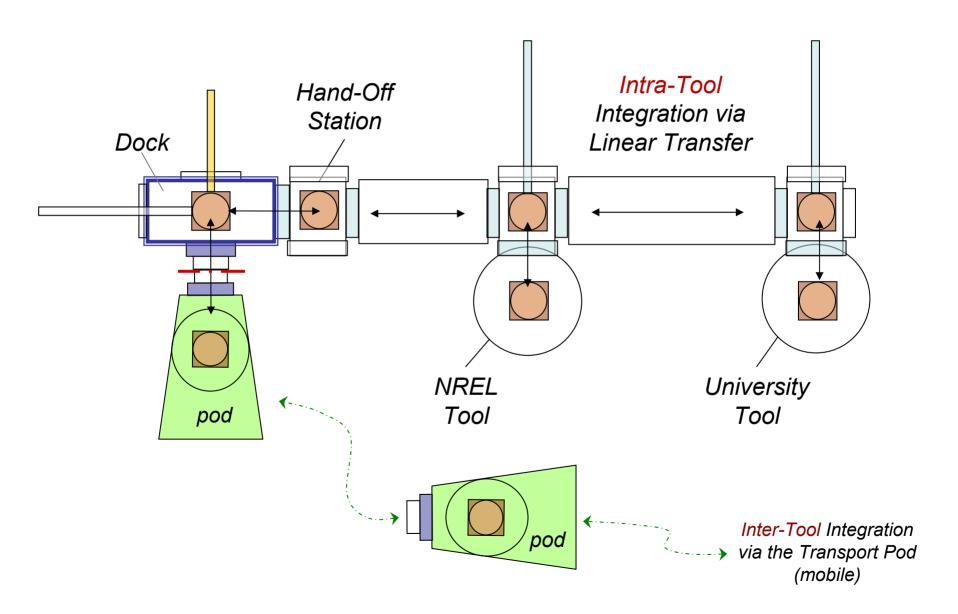
- The group must define the functionality of their tool(s)
- Assign someone work with the process integration and engineering/facilities staff as-well-as the vendor(s)
- Support from EM&D Engineering Group as needed

Hire Full-Time Software Specialists Soon:

- Upfront software integration costs ≈ 40% of development
- The software integration of tools after development and construction ≈ 4 X the initial cost


Issues to Resolve

- Software
 - control
 - data management
 - David Albin, Jeff Alleman, Russell Bauer, Pat Dippo,
 Daniel Friedman, Tom Moriarty, Brent Nelson, Steve Robbins,
 Pete Sheldon, Pauls Stradins, Yanfa Yan
- Co-Locating "Right" Tools
- Expansion
- Combinatorial
- Masks
- Secondary (smaller) Standard
- External Advisory Committee
- Move from ex-situ → in-situ → real-time (please stick around for nomenclature discussion)
- Overcome "tax" mentality → collective capacity


Tool Integration Options

Consideration	Stand-Alone (single-tool)	In-Line (multi-tool)	Robotic Cluster	Tracked Cluster
Use a standard platen	+	+	+	+
Dock a standard pod	+	<i>P</i> ⊗.+	+	+
Eliminate full air exposure between steps	•••	Considered +	•••	+
Short transfer time	_	Son	+	
Robust	+	4	+	_
Flexible	+		+	+
Sequence process steps in any order	+		+	+
Combine materials not normally combined	+		+	+
Bottom Line (Application)	Specialized Techniques	Not Considered	Ideal for Deposition	Some Analytical


Stand-Alone Tools

Cluster Tools: Track Transfer

Cluster Tools: Robotic Transfer

Stand-Alone Platform Comparison

Consideration	Manual Transfer ¹	Robotic Transfer ²	
Transfer Automation	– Difficult to fully automate	+ Designed for full automation	
Throughput ³	– Low: Limited automation	+ High: Full automation	
Robustness	– Multiple manual alignments	+ Robots designed for 24/7 use	
Footprint ⁴ (no extra tools, same functions)	– alpha design: 8'-2" x 7'-3"	+ EMS: 3'-4" x 2'-5" + MVS: 6'-1" x 4'-8"	
Expandability (min. = pod + tool)	- Can only add cassette & flipping	+ e.g., 4-port can add 2 functions + e.g., 8-port can add 6 functions	
Dock Vacuum Level	+ 10 ⁻⁸ Torr spec.ed (may be tricky) - Transfer time in minutes	 - 10⁻⁶ Torr guaranteed, 10⁻⁸ possible + Transfer time in seconds 	
Cost for Dock (no pod or tools) + 70 - 85 % of a robot		+ once a second tool is added, per tool cost is less than manual	

- ¹ An X-Y transfer where platens are loaded from the pod in X and translated to a working chamber in Y.
- ² The dock consists of a chamber containing a robot arm rather than linear, external manipulators in X & Y.
- ³ Throughput is a separate issue than automation if the time between processing steps needs to be short.
- ⁴ A small foot-print means a less lab space is used, but often makes maintenance more difficult.

Standalone Tools: Motion Location

	Consideration	Arm on Transport Pod	Arm on Tool, Effector in Tool	Arm on Load Lock on Tool
Tool	Ports Used on Tool	1) intro <u>and</u> motion	 platen intro platen motion 	 platen intro platen motion
	Tool Foot Print	no addition on tool	arm: add ~ 48"	arm + LL: add ~ 60"
	X-axis to Sweet Spot	loose 50% access	loose 100% access	loose 100% access
	Tool Complexity	not a through transfer	extra motion to clear ¹	extra motion to clear ¹
	Tool Versatility	must have pod to use	must have pod to use	dedicated LL
Pod	Pod Cleanliness	pod might be LL ²	pod might be LL ²	pod is not vented
	Pod Foot Print	arm: add ~ 48"	no addition on pod	no addition on pod
	Pod Mobility	very long pod	small pod	small pod
	Cassette Spacing	larger (or move) ³	minimal ³	minimal ³
Arm	Arm Robustness	mobile (bump hazard)	fixed (safer)	fixed (longest throw)
	Misc. Arm Issues	pod might be LL ²	exposed to process	routine venting ²

- Extra motion <u>may</u> be needed to clear stages out of the arm path when passing through the chamber. If extra motion is not needed, the box could be yellow (it still passes the arm through the process region).
- ² The pod doesn't have to serve as the load lock if platens are loaded from another tool or central load lock. In this case, the box could be green. This is also true to avoid routine venting of the load lock.
- ³ If the arm is on the pod, the platen spacing needs to allow the arm to pass through or the cassette has to be dropped below the arm for every transfer.

Cluster Tool Platform Comparison

Consideration	Track Transfer ¹	Robotic Transfer ²	
Transfer Automation	- Difficult to fully automate	+ Designed for full automation	
Throughput ³	 Low: Limited automation 	+ High: Full automation	
Robustness	- Many manual allignments	+ Robots designed for 24/7 use	
Footprint	- Larger: Uses up lab space	+ Smaller: Conserves lab space	
Expandability	Add modular sections to the "end of the line", one-at-a-time	 Robot-to-robot handoff, multiple expansion once "full"⁴ 	
Space Available for Instrumentation	+ Large: Long distances to chambers, long travel possible	Small: Chambers "clustered" around central robot	
Maintenance Access	+ Easy: Lots of space available	 Difficult: Everything packed in 	
Transfer Zone(s) Vacuum Background	+ 10 ⁻¹⁰ Torr possible - Transfer time in minutes	 – 10⁻⁸ Torr possible + Transfer time in seconds 	

- ¹ A linear transfer along a "spine" where tools are accessed perpendicularly via a secondary mechanism.
- ² Process chambers around a centralized chamber--with a circular form factor--containing a robot arm.
- ³ Throughput is a separate issue than automation if the time between processing steps needs to be short.
- ⁴ Once all ports are full, a new robotic chamber needs connecting via one ports, losing a chamber to handoff on the existing robot, but adding n-1 ports, where n=ports on new robot. This might be cheaper than adding a n-1 sections to the linear track plus the orthogonal motion to transfer to n-1 chambers.

Clustering of Integrated Tools

Consideration	One-Chamber-at-a-Time ¹	Up Front, All at Once ²	
Cost: Share common elements ³	Each chamber <u>must</u> stand alone	Sharing possible	
Cost: Software integration ⁴	X-ch. effort, assembled in end	Taken care of all at once	
Cost: Labor	NREL staff, high overhead,	Vendor staff, lower overhead,	
Cost. Lauoi	not necessarily the right skills	integration experts & experience	
Risk: Working transport	NREL accepts risk by doing it ⁵	Vendor provides working tool	
Risk: Working software	NREL accepts risk by doing it	Vendor provides working tool	
Risk: Funding	Years of funding commitment	Large funding up front	
Time: Lost science time	Back end = very large	Up front (planning) = large	
Time: Purchasing hoops	X-ch. purchases	One large purchase	
Time: To fully integrated tool	X-loops + integration = huge	Functional delivery = baseline ⁶	
Optimization: Philosophy	Build A, Optimize A, Build B	Parallel optimization	
Optimization: Methodology	Must be materials before devices	Materials in and with devices	
Politics: Demonstrates	Uncertainty, poor show-and-tell	Confidence, good show-and-tell	

- ¹ Build a chamber, get it working, build the next one, get it working, etc.--integrate them in the end.
- ² Fully design and spec. all processes and transport up front and have it delivered as an integrated cluster tool.
- ³ PLC's, gas lines, software, power distribution, etc. Although, modularity is an advantage, but not universally necessary.
- ⁴ SEMATECH: software integration upfront = 0.33 X Tool Development Cost (TDC), after the fact = 4 to 10 X TDC.
- ⁵ The biggest risk is that in "off integration optimization" the integration components will be compromised.
- ⁶ Process (or measurement) optimization has to be done in both parallel and sequential efforts, no NREL integration work.

Integration Modes

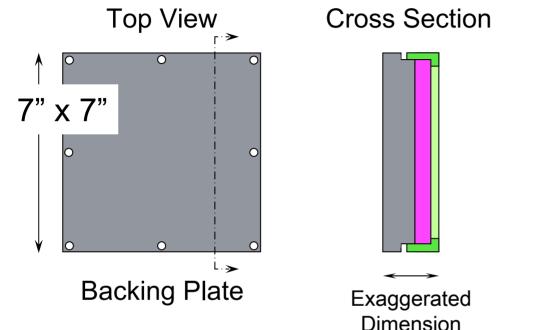
Measurement Class	Transport Ambient	Measurement Location	Measurement Ambient	Measurement Timing
Real-Time	X ¹	process ch.	controlled	during process
In-Situ	X ¹	process ch.	controlled	post or interrupted
Intra-Tool ²	controlled	same tool	controlled	post deposition
Inter-Tool ³	controlled	different tool	controlled	post deposition
Mobile Technique ⁴	controlled	mobile	controlled	varies w/ technique
Ex-Situ, air transport	air	different tool	controlled	post deposition
Ex-Situ, air measured	air	different tool	air	post deposition

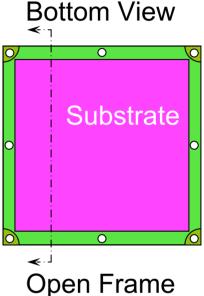
- ¹ In-Situ: Latin, "in the original place." Real-time diagnostics are a sub-set of in-situ. Once a sample is moved from the original place (chamber), it is an ex-situ measurement, even if it is within the same tool.
- ² Intra-tool transport is the movement of samples between techniques within the same set of interconnected chambers (i.e., the sample transfer within a cluster tool).
- ³ Inter-tool transport is the movement of samples between chambers where there is not a direct connection (i.e., independent cluster or stand-alone tools).
 - The transport pod introduces a new inter-tool capability while maintaining a controlled transport ambient.
- ⁴ A mobile technique is within a chamber that can be moved between tools for a fixed set of experiments.

Silicon Support by M&CD

- Electro-Optical Group
 - lifetime measurements (passivation, etc.)
 - IR for oxygen related precipitates
 - ellipsometry (HIT cells, etc.)
- Analytical Microscopy
 - EBIC
 - Cathodoluminescence
 - EBSD
- Surface Analysis
 - SIMS
- Technique Development
 - Reflectivity
- Modeling
 - materials
 - devices
- Conversion and Quantum Efficiency
 - Cells
 - Modules

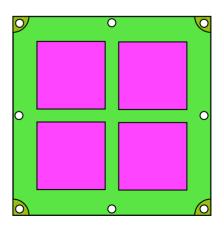
Intellectual Property

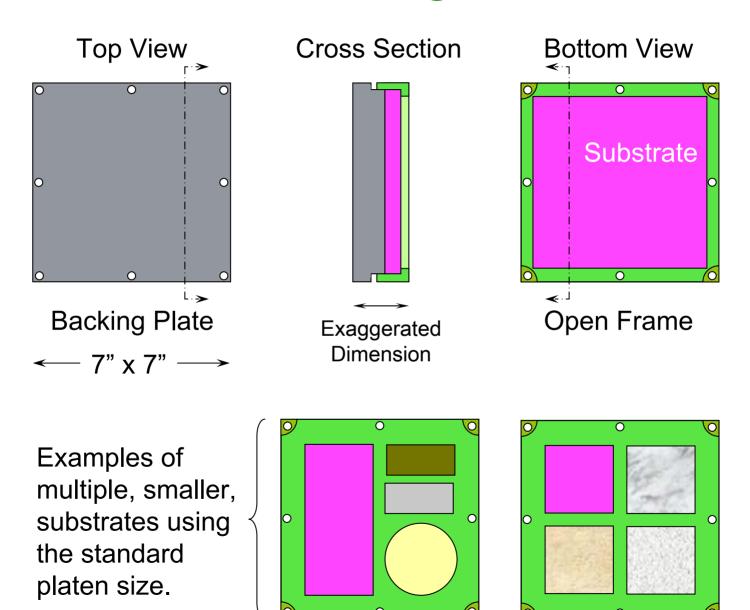

Protecting IP is a Core Value


- Computer / data security
- Sight barriers
- Case by case contracts

Mind Set

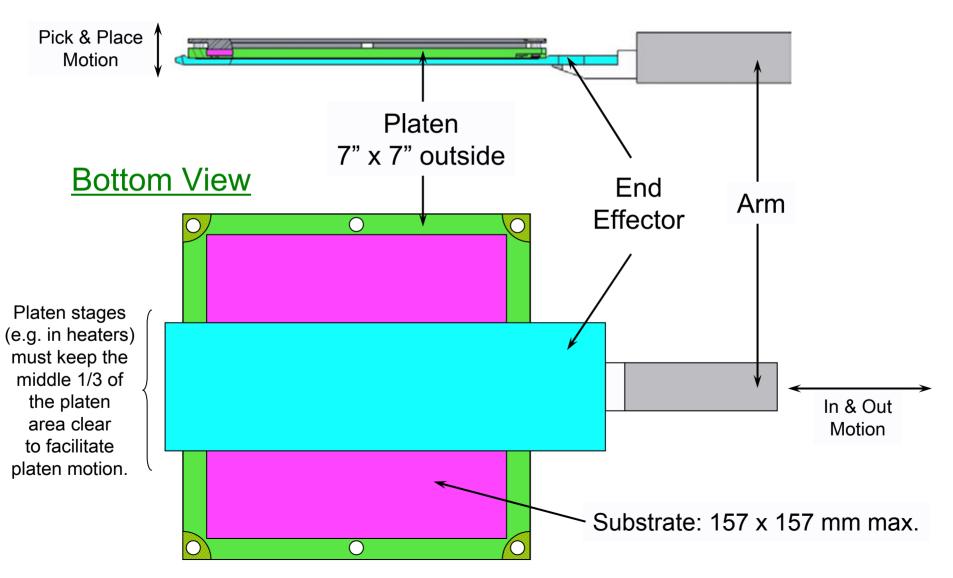
- Easy solutions for engineers can be difficult to lawyers
- Early SEMATECH model (early days worried more about making progress than protecting IP, shared kitchen design, appliances, and ingredients, didn't share recipes)
- Competition (is nuclear and coal not each other, we need fight the way to the almost infinite trough shoulder to shoulder, not fighting each other before we get there)
- Technology Overlap (reality is PV uses different materials in different form factors using different processes, this is a weakness for standardization, but a strength in protecting IP)
- Paranoia (can you really looking to a "black box" and know what somebody else is doing in there)


Substrates go in a Platen



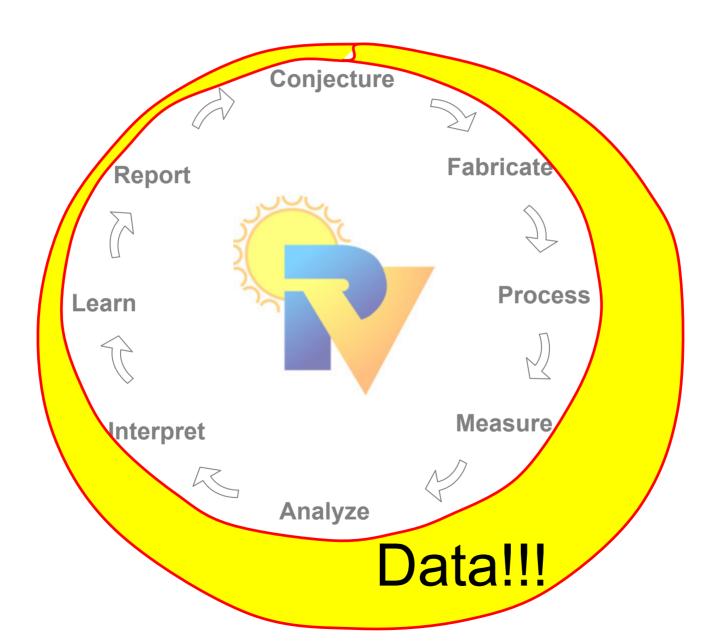
All Systems (that can) will accept this standard 7" x 7" platen form factor.

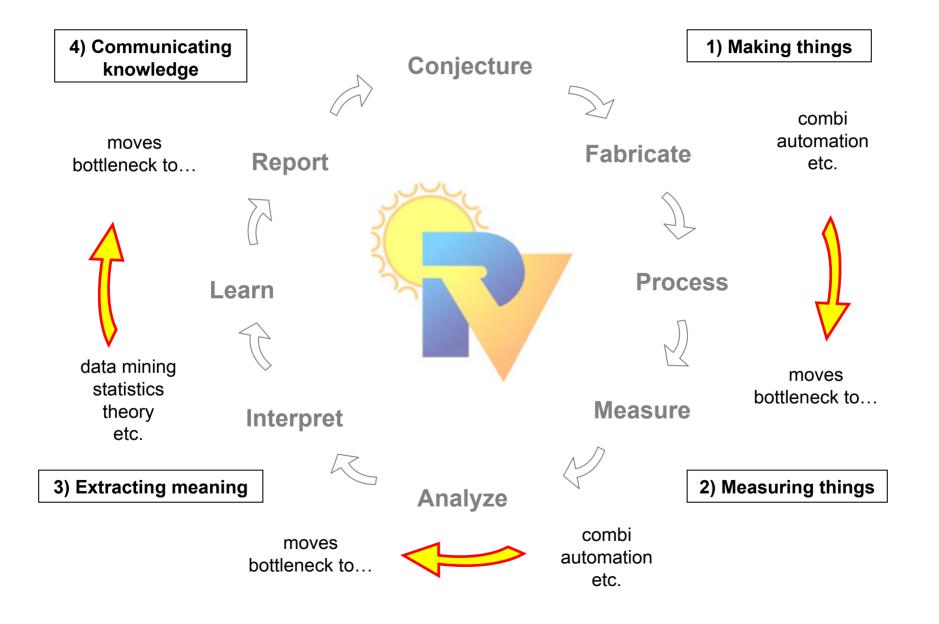
- platens made from Inconel or Molybdenum
- different platen configurations accept various substrate shapes and sizes
 - rounds
 - squares
 - multiple smaller substrates

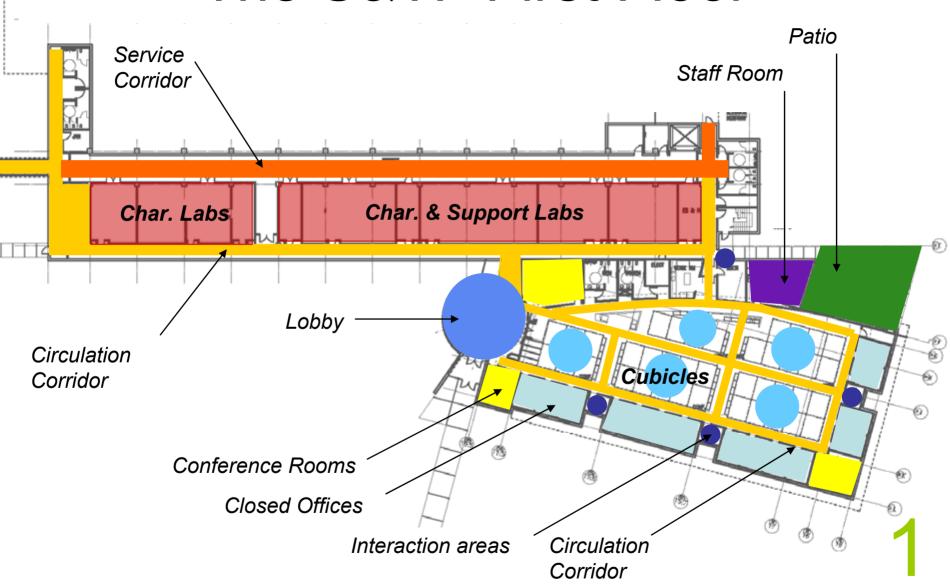


Substrates go in a Platen

Platen Manipulation


Side View


"Pick & Place" Intra-Tool Motion


One constant...

Note: Combi moves the bottlenecks

The S&TF First Floor

